
Journal of Advanced Research in Applied Sciences and Engineering Technology Vol. 6, Issue 2 July (2024)

174

Journal of Advanced Research in Applied

Sciences and Engineering Technology

Journal homepage: https://jaraset.com/

ISSN: 2462-1943

SIMULATING AND EVALUATING ACCURACY OF SOFTWARE DEFECT PREDICTION

MODEL USING DIVERSE MACHINE LEARNING TECHNIQUES

 Farukh Khan 1*, Dr. Chandikaditya Kumawat 2
1 Research Scholar, Department of Computer Science and Engineering, Mewar University, Rajasthan, India
2 Associate Professor, Department of Computer Science and Engineering, Mewar University, Rajasthan, India

ARTICLE INFO ABSTRACT

Article history:

Received: 22-08-2024

Received in revised form: 20-09-2024

Accepted: 28-09-2024

Available online: 11-11-2024

A software bug that is moved to the next stage of the software development

lifecycle (SDLC) costs ten times more to remove. This lowers the quality of the

final software product and makes the job of the project managers more

challenging. As a result, the software industry has mandated that high-quality

software projects must be completed on schedule and within budget Support

vector machine (SVM) and artificial neural network (ANN), two classification

techniques with the prediction power to manage the intricate non-linear

correlations between the software characteristics and the software fault, have

been empirically compared. Artificial neural networks (ANNs) are suitable to

construct defect prediction models because of their capacity to manage the

intricate nonlinear interactions between the software metrics and the defect

data. The feature selection techniques solve this issue. Two classifiers, ELM

and KELM, which are based on wrapper and filter-based feature selection

techniques, are used to build SDP models. The study aims to ascertain two

things: (1) the efficacy of feature selection-based classification models in

software defect prediction; and (2) whether or not the elimination of

superfluous features significantly alters the performance of the SDP models.

Keywords:

Support vector machine

(SVM), SDP models, artificial

neural network (ANN), KELM,

ELM.

Introduction

Software testing is a highly important and crucial part of software development. Up to 50% of

the total cost of software development is covered by software testing [1]. There are efforts

underway to lower the price of software testing. One area of study that attempts to identify the

early software lifecycle modules most likely to result in errors is software defect prediction. The

modules in question may be addressed in a prioritized manner, hence reducing the work and

resources needed to ensure their flawless functioning.

Journal of Advanced Research in Applied Sciences and Engineering Technology Vol. 6, Issue 2 July (2024)

175

Because software technology is becoming more and more necessary in every aspect of our lives,

software quality has become a crucial topic. Predicting software defects is seen as a quality

assurance task that reduces the amount of errors in the product that is being built beforehand. It

works by predicting a module's likelihood of having a defect before making the necessary

preparations to prevent a fault from occurring. This guarantees that sufficient time and resources

are allocated to the defect-prone components in order to adequately cover them and that neither

time nor resources are spent on a module that is defect-free. In addition to providing the

customer with a quantitative output, defect prediction aids in the development of a qualitative

product.

One of the most practical and economical software operations is defect prediction. It is regarded

by software professionals as a crucial stage that determines the quality of the product being built.

It has significantly contributed to dispelling the claims made against the software industry that it

cannot meet deadlines and budgets. In addition, there has been a noticeable change in the

clientele's reaction from unsatisfactory to better about the product quality.

The older statistical methodologies for defect prediction have been mostly supplanted by data

miners today. The classification model that forms the foundation of data mining assigns the

component to either the fault-prone or non-fault-prone class. First, we provide the classifier with

known examples, whose class we already know. After training, the model is evaluated on

instances that are unknown, and the accuracy of the prediction made by the method is assessed.

The rest of this chapter is dedicated to providing a quick overview of the disciplines and subject

that are relevant to this dissertation.

 Predicting Software Defects

The hardest task for a software engineer is handling bugs in the product once they are found.

Software flaws reduce the quality of the programmed and raise the cost of the resources used to

create it. Since fixing a fault becomes progressively more expensive as software development

progresses, it is essential to find these flaws as soon as possible. Because of this procedure, the

testing phase accounts for over half of the software project's overall cost, necessitating cautious

handling [2]. This has led the software community to create a variety of techniques to find

software flaws early in the software development lifecycle. In the research on software defect

Journal of Advanced Research in Applied Sciences and Engineering Technology Vol. 6, Issue 2 July (2024)

176

prediction, creating models for software defects is determined to be one of the noteworthy

approaches [2].

Static source code and design metrics have been useful in developing classification models since

they capture the majority of the software's coding and design elements [3]. Early in the software

development lifecycle, these indicators assist software managers in creating models for

predicting software defects. The quality analysts are guided by the expected fault proneness of a

module, which allows the resources to be effectively and efficiently focused on the problem

likely regions. This has made it easier for software firms to provide their clients with affordable,

dependable, high-quality products.

SDP is often approached as a binary classification issue, in which a module is classified as either

non-defect prone or prone to defects. A module is an individual, indivisible unit of source code.

It may be a class or a procedure, and it has a set of properties that are specific to objects, such

Chidamber and Kemerer metrics [4] for classes, or procedural metrics, like Halstead metrics [5],

for procedures. Using labeled historical defect data, a software defect prediction model is

constructed during a training phase. The trained model then functions as a classifier for newly

discovered unknown data. The SDP model's classification performance is assessed based on a

number of factors, including specificity, sensitivity, and accuracy.

Figure 1 Review Process

REVIEW OF RELATED LITERATURE

Journal of Advanced Research in Applied Sciences and Engineering Technology Vol. 6, Issue 2 July (2024)

177

Software practitioners tend to use phrases like defect, fault, mistake, malfunction, and failure

interchangeably. They are specifically defined by Parhami [52] as distinct states where the

system may go above owing to a repair or below due to a fluctuation.

Anticipating the possibility of a flaw occurring in a certain software module is one of the

potential remedies that saved the software engineers. The probability of a defect occurring aided

them in organizing these modules based on the expected severity of the fault and allocating

enough time and personnel to them in order to minimize errors in the final product and avoid

going over budget. This approach, which has been studied and used by many academics, is

known as "Software Defect Prediction [6]."

Researchers have shown a link between several software process and product indicators and the

incidence of software defects [3]. Early software lifecycle defect forecasting is facilitated by

prediction models that are constructed using a mix of software metrics and previous defect data.

The inability of machine learning approaches to provide a benchmark result increases with the

complexity and imprecision of the software project data collection process. In order to prevent

the performance of software defect prediction systems from declining, a set of algorithms that

could include this imprecision and uncertainty into their operation became necessary. These

techniques eventually led to the development of the term "Soft Computing" (SC). In the early

1990s, SC developed as an approach to address the software defect prediction issue. It served as

the foundation for a significant number of machine learning approaches at first, and it later

developed to include fuzzy-based methods and evolutionary algorithms.

It is critical to understand the importance of using these approaches and, therefore, to summaries

the available literature research in order to analyze and further improve the employability of SC

in software defect prediction. To the best of the authors' knowledge, none of the review articles

that have been published in the SDP literature [54, 55, 56] have addressed the use of soft

computing approaches to help determine if a module belongs to a faulty or non-defective label at

the method or class level.

Journal of Advanced Research in Applied Sciences and Engineering Technology Vol. 6, Issue 2 July (2024)

178

This made it easier for us to research and look at how approaches are represented as models for

tackling SDP problems, how new approaches are represented, what difficulties have been

addressed, and what traditional challenges in this field still need to be solved. Motivation

In 2009, Catal and Diri [4] conducted a comprehensive analysis of 74 research studies on

software fault prediction. The utilisation trends of procedural and object-oriented metrics, public

and private data sets, machine learning, and statistical approaches utilized in SDP techniques

were the main topics of this study. In a different study, Catal [5] reviewed 90 papers published

between 1990 and 2009, covering the machine learning and statistical methods used by the

authors[7].

Abaei and Selamat [7] conducted an empirical analysis using four NASA [8] datasets that

included method level metrics, principal component analysis, correlation-based feature selection

techniques, and naive Bayes, decision trees, decision tables, random forests, neural networks,

artificial immune systems (AIS), CLONALG, and Immunos. They also presented a survey of

various machine learning approaches of software defect detection.

This literature review is unique in the ways listed below:

 The prior research has only looked at machine learning methods used in software fault

prediction. Machine learning approaches are just one subset of the soft computing

strategies used for SDP issues, which are covered in full in this review article. As such, it

provides a clearer picture of the relationship between machine learning techniques and

other components of soft computing, such fuzzy and evolutionary techniques[8].

 This work has 120 research publications overall, spanning the years 2005 through 2023.

As a result, it will ultimately provide a deeper and more thorough picture than the

previous ones.

 This review aims to do two things: first, it will analyse the research based on metrics,

datasets, and techniques; second, it will examine the rise of published studies on SC in

SDP year over year.

Material and Methodology

Journal of Advanced Research in Applied Sciences and Engineering Technology Vol. 6, Issue 2 July (2024)

179

The procedural steps that were taken throughout the review process. Three steps comprised the

process: planning, carrying out, and reporting the outcomes. The goal of the review was

determined during the planning stage, and the requirements for research publications to be

included for consideration under review were set. Examining the selection criteria, examining the

nature of the review studies, and collecting data are all part of the second phase. In the last step,

the analysis and review findings were presented. Selection Criteria

In order to investigate the viability of SC approaches as a solution to software defect prediction

problems, this review work looks at how techniques are represented as a model for addressing

SDP problems, as well as the concerns that have been overcome and the classic challenges that

need more investigation[9]. The selection criteria developed for the research papers to be

considered under review are described in

 State of the Art

A survey of the applications of soft computing techniques to software defect prediction issues

was provided by the literature analysis. Depending on the kind of SC method used by the

authors, the included research were further categorised into three groups.

 Evolutionary Methods

In order to decrease the amount of faulty software modules, Vandecruys et al. [9] introduced a

data mining approach called AntMiner+ that is based on ACO and is used to create efficient

defect prediction models. On three NASA public datasets, the authors evaluated their technique's

accuracy performance against that of C4.5, logistic regression, and support vector machines. The

results demonstrate that the suggested technique is superior and can be used to identify the

crucial stages of the software development lifecycle.

Mausa et al.'s analysis [6] of the ensembles' defect prediction ability for the imbalanced datasets

made use of genetic programming. The multi objective evolutionary algorithm used three distinct

mechanisms for ensemble selection. Three public datasets the Java Development Tool, the

Eclipse Plugin, and Apache Hadoop were utilised in various versions. Four datasets from the

UCI library were also used to duplicate the experiments [1]. In contrast to the previous

Journal of Advanced Research in Applied Sciences and Engineering Technology Vol. 6, Issue 2 July (2024)

180

evolutionary algorithms, the findings demonstrated that the multilevel selection approach that

was given produced dependable results and had a quick rate of convergence.

 Research Process

The research process outlines the procedures to be followed in order to complete the assignment

efficiently. The research methodology used in this thesis project is shown in Figure 1. The steps

shown in Figure 2 are explained in the next section. In the next chapters of this dissertation, these

procedures are followed.

Figure 2 The Methodology of Research

 Selecting Data Analysis Techniques

The choice of data analysis techniques is aided by the nature of the dependent variable being

used [10]. Four machine learning techniques were evaluated in this work: Kernel-based Extreme

Learning Machine (KELM), Support Vector Machine (SVM), Artificial Neural Network (ANN),

and Extreme Learning Machine (ELM). The fault proneness, a binary dependent variable, is

predicted using these machine learning techniques.

Define

Research

Problem

Literature

Survey
Define Variables

Selection of

Machine Learning

Methods

Development

of Hypothesis

Software Defect

Data Sets

Collection

Model Prediction

and Collection of

Results

Interpret the

Results

Journal of Advanced Research in Applied Sciences and Engineering Technology Vol. 6, Issue 2 July (2024)

181

Figure 3 Choosing Data Analysis Techniques

 Support Vector Machine

In a Support Vector Machine (SVM) model, the examples are represented as a collection of

points in space that are spaced so that the gaps between the various categories are as large as

feasible. Depending on which side the unlabeled data falls on, predictions are made for them.

Kernel functions are those that carry out this mapping into the space. The most prevalent kinds

of kernel functions are sigmoid, polynomial, linear, and Gaussian functions [4, 5, 6]. A single

data point is placed in a p-dimensional space and a linear SVM classifier, determines whether or

not these points may be separated by a (p-1) dimensional hyper plane. The hyper plane that

divides the data points with the biggest margin between the two classes is the best option. Stated

Journal of Advanced Research in Applied Sciences and Engineering Technology Vol. 6, Issue 2 July (2024)

182

otherwise, the optimal separation hyper plane is selected to minimize the generalization error by

having the largest buffer from the closest training data point.

Figure 4 A basic classifier using linear hyperplane

RESULT

The tests were carried out using the MATLAB 2022 software. The MATLAB code for the LM,

BR, and RP training methods can be found in Table 1.The study used multilayer feed forward

neural network topologies with a single hidden layer consisting of 10 default neurons. The input

layer has a number of neurons that is equal to the number of characteristics in the data set. The

final layer consists of two neurons, one representing the class of non-defective modules and the

other representing the class of defective modules [12].

Table 1 Functions for implementing MATLAB

S. No. Algorithm MATLAB Implementation

1 Resilient back propagation Trainlm

2 Resilient back propagation Trainrp

3 Bayesian Regularization Trainbr

Table 2 Accuracy

Dataset LM RP BR

PC1 94.13 94.72 97.92

Journal of Advanced Research in Applied Sciences and Engineering Technology Vol. 6, Issue 2 July (2024)

183

PC2 98.79 99.19 98.43

PC3 88.76 88.76 99.97

PC4 92.16 88.35 92.62

PC5 98.25 99.74 97.59

KC2 83.35 89.93 93.16

KC3 85.88 83.48 97.77

Table 3 Value of the Test Set's R Square

Dataset LM RP BR

PC1 0.86 0.86 0.41

PC2 0.97 0.99 0.96

PC3 0.76 0.78 0.5

PC4 0.88 0.80 0.31

PC5 0.94 0.96 0.99

KC2 0.9 0.95 0.9

KC3 0.88 0.5 0.9

Table 4 Sensitivity

Dataset LM RP BR

PC1 38.23 3.3 82.39

PC2 0 0 0

PC3 8.23 3.23 72.89

PC4 39.23 12.23 75.16

PC5 21.76 18.86 66.37

KC2 27.96 22.56 70.16

KC3 17.76 0 95.55

Journal of Advanced Research in Applied Sciences and Engineering Technology Vol. 6, Issue 2 July (2024)

184

Table 5 Specificity

Dataset LM RP BR

PC1 99.91 93.04 97.83

PC2 100 100 99.72

PC3 100 99.15 96.71

PC4 99.95 99.91 95.23

PC5 100 95.82 99.81

KC2 98.19 95.23 96.87

KC3 100 100 93.04

Table 6 MSE and RMSE

Dataset
LM RP BR

MSE RMSE MSE RMSE MSE RMSE

PC1

PC2
0.07 0.03 0.26 0.17 0.05 0.02 0.22 0.14

1.11E-

0.0310

0

0.17

PC3 0.23 0.33 0.09 0.3 0.02 0.14

PC4 0.06 0.24 0.08 0.28 0.01 0.1

PC5 0.02 0.14 0.02 0.14 0.01 0.1

KC2 0.1 0.31 0.15 0.38 0.03 0.17

KC3 0.22 0.47 0.18 0.42 4.91E- 2.21E-

Table 7 False Negative Rate (FNR/Type II Error)

Dataset LM RP BR

PC1 65.11 97.67 18.6

PC2 100 100 100

PC3 92.54 97.76 29.1

PC4 63.48 88.76 25.84

Journal of Advanced Research in Applied Sciences and Engineering Technology Vol. 6, Issue 2 July (2024)

185

PC5 80.23 83.14 36.62

KC2 70.09 79.44 30.84

KC3 80.55 100 19.44

Table 8 False Positive Rate (Type I Error)

Dataset LM RP BR

PC1 1.53 0.19 2.49

PC2 0 0 0.27

PC3 0.64 0.84 3.28

PC4 1.33 1.71 4.76

PC5 0.28 0.27 0.37

KC2 2.89 2.16 3.13

KC3 0.63 0 6.96

Journal of Advanced Research in Applied Sciences and Engineering Technology Vol. 6, Issue 2 July (2024)

186

Figure 5 Regression plots of observed vs. target plots of LM algorithm for the seven

datasets.

Journal of Advanced Research in Applied Sciences and Engineering Technology Vol. 6, Issue 2 July (2024)

187

Figure 6 Regression plots were created to compare the observed values with the target

values of the RP method for the seven datasets.

Journal of Advanced Research in Applied Sciences and Engineering Technology Vol. 6, Issue 2 July (2024)

188

Figure 7 Regression graphs comparing the observed values to the desired values using the

BR method for the seven datasets.

 Discussion

Nevertheless, the R2 values exhibit complete inconsistency. A higher R2 result indicates a

stronger match. LM and RP exhibited comparable performance, achieving an 84 percent data fit

specifically for PC1. Overall, LM outperformed the other two equivalents in four out of seven

data sets. Typically, a value of R2 greater than 0.9 is considered to indicate a strong fit [6]. LM

and BR were found to be robust modelling strategies for the PC5 and PC2 defect datasets,

respectively, based on this criteria.

The Bayesian based training function outperformed the LM and RP approaches in terms of

accuracy and sensitivity parameters, achieving an accuracy of above 90 percent on all datasets.

Furthermore, BR had the highest level of accuracy in six out of seven instances. Nevertheless,

accuracy may often provide a misleading perception of performance as a result of the presence of

imbalanced datasets with defects. While LM and RP demonstrated superior specificity compared

to BR, specificity is not a crucial performance metric. Sensitivity is more significant since

accurately classifying faulty modules is vital, rather than properly identifying non-defective

modules [14].

CONCLUSION

This conducts an empirical research to compare the performance of three conventional back

propagation based training algorithms, including Laverberg Marquardt, Resilient back

propagation, and Bayesian Regularization, in the context of software fault prediction. A

Journal of Advanced Research in Applied Sciences and Engineering Technology Vol. 6, Issue 2 July (2024)

189

multilayer feed forward artificial neural network was constructed using the MATLAB command

line interface. Seven faulty data sets from the PROMISE repository were used in the

experiments. The classification models were evaluated based on parameters derived from the

confusion matrix and statistical metrics including Mean Squared Error (MSE), Root Mean

Squared Error (RMSE), and R2 value. BR outperformed LM and RP in terms of MSE, R2 value,

accuracy, recall, and false negative rate, according to a comprehensive comparison. The findings

indicate that the context and criticality of the software project play a crucial role in helping

project manager’s priorities performance measurements and choose the appropriate training

algorithm based on the available objectives and resources [15].

The back propagation training algorithms are a kind of optimisation algorithms that aim to

optimize the weights in order to attain optimal performance. Studies have also shown the use of

nature-inspired search-based optimisation algorithms in the domain of software engineering.

Future work might include doing an empirical investigation of the back propagation learning

functions and search-based approaches within the domain of software fault prediction.

To precisely measure the software defect prediction model's performance, one must carefully

choose and comprehend the relevant metrics, and then gauge the model's effectiveness in light of

the particular requirements of the software project. Different metrics may help understand the

categorization performance, but they can also complicate the conclusion-making process. As

previously said, it is not unexpected for disparate performance metrics to provide contradictory

comparison outcomes. Previous investigations have also noted a similar tendency. In theory, the

confusion matrix is used to construct the performance indices, and this is a straightforward

process. In actuality, however, the prediction models' comparisons are only meaningful if the

performance metrics are intimately connected to the project's particular needs.

We came to the conclusion that there are several dimensions to the software defect prediction

issue and that it is unusual for a single model to perform optimally across all software quality

situations. It becomes clear from this that the objective is to increase both the effectiveness of

software verification processes and the classifier's performance. This prompts us to think about

and look into more cost-sensitive variables in subsequent work, including the F-measure and its

numerous derivatives.

Journal of Advanced Research in Applied Sciences and Engineering Technology Vol. 6, Issue 2 July (2024)

190

REFERENCES

[1] Y. Singh, “Software testing,” Cambridge University Press, 2012.

[2] A. Singh and R. Malhotra, “Object oriented software engineering”, PHI Learning, India,

2012.

[3] S. Henry and D. Kafura, “Software structure metrics based on information flow”, IEEE

Transactions on Software Engineering, vol. 7, no. 5, pp. 510–518, 1981.

[4] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented design”, IEEE

Transactions on Software Engineering, vol. 20, pp. 476-493, 1994.

[5] M. H. Maurice, “Elements of software science”, Elsevier, 1977.

[6] T. M. Khoshgoftaar, K. Gao, R. M. Szabo, “An application of zeroinflated Poisson regression

for software fault prediction”, Proceedings of 12th International Symposium on Software

Reliability Engineering, Hong Kong, China, pp. 66-73, 2001.

[7] V. U. B. Challagulla, F. B. Bastani, I-L. Yen and R. A. Paul, “Empirical assessment of

machine learning based defect prediction techniques”, International Journal on Artificial

Intelligence Tools, vol. 17, no. 2, pp. 389-400, 2008.

[8] K. O. Elish, M. O. Elish, “Predicting defect-prone software modules using support vector

machines”, Journal of Systems and Software, vol. 81, no. 5, pp. 649-660, 2008.

[9] C. Elken, “The foundations of cost-sensitive learning”, in 17th International Joint Conference

on Artificial Intelligence (IJCAI’01), Seattle, WA, USA, pp. 973-978, 2001.

[10] V. Chandwani, V. Agrawal and R. Nagar, “Modeling slump of ready mix concrete using

genetic algorithms assisted training of artificial neural networks”, Expert Systems with

Applications, vol. 42, no. 2, pp. 885-893, 2015.

[11] R. S. Rathore and S. Kumar, “Predicting number of faults in software system using genetic

programming”, International Conference on Soft Computing and Software Engineering,

Berkeley, pp. 303-311, 2015.

Journal of Advanced Research in Applied Sciences and Engineering Technology Vol. 6, Issue 2 July (2024)

191

[12] J. Kennedy and R. Eberhart, “Particle swarm optimisation”, IEEE International Conference

on Neural Networks, Australia, pp. 19421948, 1995.

[13] L. J. Fogel, A. J. Owens, and M. J. Walsh, “Artificial intelligence through simulated

evolution, Wiley, New York, 1966.

[14] L. C. Briand, P. Devanbu, and W. Melo, “An investigation into coupling measures for

C++,” In the Proceedings of the ICSE 97, Boston, USA, 1997.

[15] J. Bieman, and B. Kang, “Cohesion and reuse in an object-oriented system,” In Proceedings

of the CM Symposium on Software Reusability, pp. 259-262, 1995.

	Predicting Software Defects
	Figure 1 Review Process
	This made it easier for us to research and look at how approaches are represented as models for tackling SDP problems, how new approaches are represented, what difficulties have been addressed, and what traditional challenges in this field still need ...
	State of the Art
	Evolutionary Methods

	Research Process
	Figure 2 The Methodology of Research
	Selecting Data Analysis Techniques
	Figure 3 Choosing Data Analysis Techniques
	Support Vector Machine

	Figure 4 A basic classifier using linear hyperplane
	Table 1 Functions for implementing MATLAB
	Table 2 Accuracy
	Table 3 Value of the Test Set's R Square
	Table 4 Sensitivity
	Table 5 Specificity
	Table 6 MSE and RMSE
	Table 7 False Negative Rate (FNR/Type II Error)
	Table 8 False Positive Rate (Type I Error)
	Figure 6 Regression plots were created to compare the observed values with the target values of the RP method for the seven datasets.
	Figure 7 Regression graphs comparing the observed values to the desired values using the BR method for the seven datasets.
	Discussion
	REFERENCES

