Twist Blade Distributor in Fluidization Systems: Part 1 – The Computational Procedure

Mohammad Azrul Rizal Alias

Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Kampus Alam UniMAP, Pauh Putra, 02600 Arau, Perlis, Malaysia

Mohd Al Hafiz Mohd Nawi

Simulation and Modelling Research Group (SiMMREG), Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Kampus Alam UniMAP, Pauh Putra, 02600 Arau, Perlis, Malaysia

Mohd Sharizan Md Sarip

Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Kompleks Pusat Pengajian Jejawi 3, Kawasan Perindustrian Jejawi, 02600 Arau, Perlis, Malaysia

Md Tasyrif Abdul Rahman

Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Kampus Alam UniMAP, Pauh Putra, 02600 Arau, Perlis, Malaysia

Muhamad Silmie Mohamad Shabri

Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Kampus Alam UniMAP, Pauh Putra, 02600 Arau, Perlis, Malaysia

Raja Muhammad Zulkifli Raja Ibrahim

Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Kampus Alam UniMAP, Pauh Putra, 02600 Arau, Perlis, Malaysia

Keywords:

Fluidized bed, Tangential velocity, Twist blade distributor, Velocity magnitude

Abstract

Flowing gas in fluidized bed through selected inlet distributor may imparts a drag effect on the particles, would cause an increase in gas flow, that maybe sufficient to rearrange the particles movement. Thus, study on the airflow in a fluidization system through numerical analysis has been conducted to investigate the airflow distribution affected by new model distributor of twist blade distributor configuration. The present study would emphasis on computational procedure and parametric study via ANSYS Fluent before a detailed study on selected twist blade distributor are conducted. The selected parametric study on the twist blade distributor configuration whereby the twist blade angle (100°), horizontal inclination angle (15°), radial inclination angle (10°) and number of blades (60) was carried out. Therefore, the results of the studies that have been carried out meet the expected standards based on previous studies.



Published

2023-01-03

How to Cite

Mohammad Azrul Rizal Alias, Mohd Al Hafiz Mohd Nawi, Mohd Sharizan Md Sarip, Md Tasyrif Abdul Rahman, Muhamad Silmie Mohamad Shabri, & Raja Muhammad Zulkifli Raja Ibrahim. (2023). Twist Blade Distributor in Fluidization Systems: Part 1 – The Computational Procedure. Journal of Advanced Research in Applied Sciences and Engineering Technology29(2), 1–11. https://doi.org/10.37934/araset.29.2.111

ISSUE

2023 Vol. 5 No. 1 – Jan 2023 (2023)

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top